The Cold Never Bothered Me Anyway

By Dr. Ethan Siegel

Auroral overlays from the IMAGE spacecraft.
Image credit: NASA Earth Observatory (Goddard Space Flight Center) / Blue Marble team.

For those of us in the northern hemisphere, winter brings long, cold nights, which are often excellent for sky watchers (so long as there's a way to keep warm!) But there's often an added bonus that comes along when conditions are just right: the polar lights, or the Aurora Borealis around the North Pole. Here on our world, a brilliant green light often appears for observers at high northern latitudes, with occasional, dimmer reds and even blues lighting up a clear night.

We had always assumed that there was some connection between particles emitted from the Sun and the aurorae, as particularly intense displays were observed around three days after a solar storm occurred in the direction of Earth. Presumably, particles originating from the Sun—ionized electrons and atomic nuclei like protons and alpha particles—make up the vast majority of the solar wind and get funneled by the Earth's magnetic field into a circle around its magnetic poles. They're energetic enough to knock electrons off atoms and molecules at various layers in the upper atmosphere—particles like molecular nitrogen, oxygen and atomic hydrogen. And when the electrons fall back either onto the atoms or to lower energy levels, they emit light of varying but particular wavelengths—oxygen producing the most common green signature, with less common states of oxygen and hydrogen producing red and the occasional blue from nitrogen.

But it wasn't until the 2000s that this picture was directly confirmed! NASA's Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite (which ceased operations in December 2005) was able to find out how the magnetosphere responded to solar wind changes, how the plasmas were energized, transported and (in some cases) lost, and many more properties of our magnetosphere. Planets without significant magnetic fields such as Venus and Mars have much smaller, weaker aurorae than we do, and gas giant planets like Saturn have aurorae that primarily shine in the ultraviolet rather than the visible. Nevertheless, the aurorae are a spectacular sight in the evening, particularly for observers in Alaska, Canada and the Scandinavian countries. But when a solar storm comes our way, keep your eyes towards the north at night; the views will be well worth braving the cold!